ANKAN DUTTA

Connected Biomedical Devices | Deep Learning | Flexible Ultrasound

 ☑ Scholar
 in linkedin.com/in/ankann
 ☑ orcid.org
 O github.com/ankann
 ☑ ankan.info

 □ +1 (814) 826 5842
 ☑ amd7627@psu.edu

Summary

- Biomedical engineer with 5+ years of experience in connected wearable devices and robotics
- Founder of a medical startup (failed) providing home doctor facility along with at-home diagnostics
- Author of 7 papers (9 in review) and contributed two NIH proposals and one company-based proposal
- Interdisciplinary researcher worked with research groups in USA, China, India, Germany, and South Korea
- Research featured in The Science Times, Scary Mommy, Wevolver, DailyMail, New York Post, Toledovuzz

Education

2021 - Present The Pennsylvania State University, University Park Ph.D. (2^{nd} year) in Engineering Science and Mechanics (*Expected Graduation 2026*) GPA: 4.00 / 4.00

</> </> </> </> TECHNICAL SKILLS

PROGRAMMING	• Python • MATLAB • OpenAl Gym• Java • ^E EX
SIMULATION	• COMSOL • Simulink • LabVIEW• ABAQUS• ROS • AutoCAD • ANSYS • SolidWorks • Creo
NANOFABRICATION	Maskless Pattern Exposure • Evaporator • Sputtering • Wet Bench
CHARACTERIZATION	• FESEM • EDX • Dicing • Poling (w/o Temperature) • Impedance Analyzer
COURSES COVERED	Wearable Electronics NEMS/MEMS Cellular and Molecular Neuroscience Neural Interfaces
	Neural Data Analysis• Nano Optoelectronics • Underactuated Robotics

🗱 Research Experience

Present August 2021	 Cheng Research Lab Ph.D. Researcher, PENNSYLVANIA STATE UNIVERSITY, University Park Working with Prof. Huanyu (Larry) Cheng to : fabricate, characterize stretchable Ultrasound array for neural imaging and cavitation fabricate on-demand transient electronics based magnetic soft-robotics design Reinforcement Learning-enabled controller for maneuvering transient electronics based soft-robots to targeted location for drug delivery develop Deep Learning algorithm to detect then decipher words using strain sensor data simulate and fabricate iontronic pressure sensors to control the sensitivity and linear range decouple stimuli like gas and temperature using multi-parameter based VO₂-doped Laser Induced Graphene sensor. fabricate and design stretchable energy harvesting and self-powering sensors Flexible Ultrasound On-Demand Transience Photoacoustic Transient Implants Soft Robots Deep Learning
May 2021 May 2018	 Thin Film & Nanoscience Lab Undergraduate Researcher, JADAVPUR UNIVERSITY, India Working with Prof. Kalyan Kumar Chattopadhyay to : > fabricate and model I-V characteristics of disorder governed Resistive Random Access Memory using Non-Equilibrium Green's Function and Many Body Localization at Room Temperature - > fabricate CNT-based ECG electrodes for heart monitoring textiles (under MEDhof) - Nano RRAM Neuromorphic Synaptic Plasticity NEGF Quantum Transport Bio-synapse Many Body Localization
May 2021 August 2018	 Artificial Intelligence Lab Undergraduate Researcher, JADAVPUR UNIVERSITY, India Working with Prof. Amit Konar to : develop statistical learning theory for ANN using Riemannian Manifold develop fluid inspired path planning algorithm for Brain Computer Interface controlled wheel-chair model Motion Planning for ABB Robotic Manipulator to play table tennis Neural Network Robotics Statistical Learning Theory Reinforcement Learning Brain Computer Interface

66 Leadership & Teaching Skills

• Founded MEDhof, a medical startup supplying at-home diagnostics and providing home doctor facility

- Lead a team of 35 doctors and 12 core members under MEDhof with a valuation of \$150k
- Served as a Teaching Assistant for a year, teaching Statics and Dynamics to a class of 420 students.

PUBLICATIONS

> Pathway of Transient Electronics towards Connected Biomedical Applications (First Author) Nanoscale

- > Vanadium Oxide-Doped Laser-Induced Graphene Multi-Parameter Sensor to Decouple Soil Nitrogen Loss and Temperature (Fourth Author) Advanced Materials
- > Pencil-on-Paper Humidity Sensor Treated with NaCl Solution for Health Monitoring and Skin Characterization (Fourth Author) Nano Letters
- > Fully stretchable, porous Mxene-Graphene foam nanocomposites for energy harvesting and self-powered sensing (*Fiveth Author*) Nano Energy
- > Iontronic pressure sensor with ultra-board linear range and high sensitivity enabled by laser-induced gradient pyramidal structures (Second Author) Preprint
- > Chaos and complexity from quantum neural network. A study with diffusion metric in machine learning (Second Author) JHEP
- > Geometry perspective of estimating learning capability of neural networks (First Author) arXiv

PROJECTS

MEDHOF | FOUNDER

☑ medhof.com

A medical startup that provides distributed patient-centered medical home facility. We are working on point-of-care medical technologies by collecting real-time medical data-points

- ECG based e-textile for cardiac patients with Jadavpur University Thin Film & Nanoscience Lab 🖨
- Volumetric Food Calorie Estimation using GIF captured in mobile camera 🖸
- Multi Piezo-Based Shoe to analyse the gait movement with Jadavpur University Organic Nano Piezoelectric Devices Lab
- Medical Service Startup Health Monitoring Textile Food Calorie Estimator Gait Movement

FRIENDLY SLEEP PATTERN MONITORING DEVICE

MIT India Initiative Design, Technology & Social Innovation Workshop under Community based Healthcare A friendly, comfortable EEG cap with a personal touch of cartoon characters close to people has been prototyped, collecting EEG data for a much longer period. The project was selected to be funded by Aarogya Seva, India.

 EEG
 Sleep Pattern
 Brain Computer Interface

QUICKSOLUTIONS : SEWAGE POOLING TEST FOR SARS-COV-2

C Techstars Startup CoVID-19 Challenge, India Chapter C Sewage Pooling Test for SARS-CoV-2

A method that uses wastewater samples from sewage systems to pinpoint the regions which are affected by maximum chances of the virus spread. The algorithm also uses a priority-based backtracking procedure to perform testing in sewage links depending on the probability of infection in the sub-areas.

CoVID-19 Sewage Pooling Test Bio-statistics

NEUROMATCH ACADEMY | PROJECT STUDENT - COMPUTATIONAL NEUROSCIENCE

🖸 Neuromatch Academy

Improved the latency detection and Brain Atlas correspondence using Face-House Dataset.

Neural Data EEG Brain Atlas

- 2022 Attended SAE Media Group's Biosensors for Medical Wearables conference, Boston, MA
- 2022 Selected for Business of Science Bootcamp, Penn State, PA
- 2021 Awarded Science & Engineering Research Board (SERB) Fellowship for Theoretical and Simulation of an alternative Resistive Switching of Ag-PANI composite - Indian Association for the Cultivation of Science
- 2020 Awarded Science & Engineering Research Board (SERB) Fellowship for Size Selective Carbon Quantum Dots and its Application to Luminescence and Solar Cell Jadavpur University, India
- 2020 Selected for MIT India Initiative Design, Technology & Social Innovation Workshop under Community based Healthcare
- 2020 Winner at Techstars Startup CoVID-19 Challenge, India Chapter for QUICKSOLUTIONS
- 2020 Selected for MIT CoVID-19 Challenge and one of the founding members of the team, which became one of the finalists in Falling Walls 2020

📽 Social Activities

- > Member of Blood Donors Association and responsible for organizing monthly cultural orientation for Thalassemia patients
- > Organized Medical Camps to spread awareness about mental health under Social Responsibility flag of MEDhof
- > Part of a survey visit at St Jude's India Child Care Centers, Mumbai, India under MIT India Initiative

JAN 2020

APRIL 2020

2016 - 2018

JULY 2021

2