# ANKAN DUTTA

21 Worthington St. #2, Boston, MA | +1(814) 826-5842 | ankan@mit.edu

Google Scholar | linkedin.com/in/ankann/ | www.ankan.info

### **SUMMARY**

- Biomedical engineer with 5+ years of experience in biomedical wearable devices, implants, and soft robotics.
- NIH T32 Fellow ('23- '24), Diefenderfer Fellow ('24- '25), Fox Scholar ('25) and Leighton Riess Fellow ('25- '26).
- Founded NeuroXR selected for NSF I-Corps National Team (Spring 2024 cohort).
- Author of 26 papers (3 in review) and 2 patent pending, and reviewer of 9 journals like npj Flexible Electronics.
- Led or contributed to three NIH proposals, two NSF proposals and two company-based proposals and collaborated with multiple universities across the US, China, India, South Korea, and Germany.
- Research featured in Technology Networks, Phys.org, EurekAlert!, TechXplore, TechExplorist, Mirage, AZOsensors, The Science Times, Scary Mommy, Wevolver, DailyMail, New York Post, Toledovuzz, Nanowerk.

### **EDUCATION**

## **B.E.** in Mechanical Engineering

2020

Jadavpur University Kolkata, India

Relevant Coursework: Solid Mechanics, Fluid Mechanics, Strength of Materials, Robotics, Control Systems

## M.S. in Engineering Science

2023

The Pennsylvania State University

University Park, PA

Relevant Coursework: NEMS/MEMS, Wearable Electronics, BioMEMS, Neural Interfaces, Cellular and Molecular Neuroscience, Neural Data Analysis, Nano Optoelectronics, Sound Waves in Fluids GPA: 4.00/4.00

## Ph.D. in Mechanical Engineering

Expected 2026

The Pennsylvania State University

University Park, PA

Thesis Advisor: Prof. Huanyu Cheng (huanyu.cheng@psu.edu)

Broad Institute of MIT and Harvard (Visiting Student)

Cambridge, MA

Supervisor: Prof. Giovanni Traverso (cgt20@mit.edu)

Dissertation Title: Neural devices for understanding neural responses during haptic sensation

GPA: 4.00/4.00

#### **RELEVANT SKILLS**

**Fabrication** Laser Etching/Ablation, Transfer Printing, Maskless Pattern Exposure, Mask Aligner,

Evaporator, Wet Bench, Spin/Develop Bench

**Characterization** FESEM, EDX, Dicing, Poling, Ultrasound: Pulse-echo, Cavitation, Rheological, Mechanical:

Tensile, Compression, Adhesion, Semiconductor Analyzer, Electrochemical- AutoLab

**Simulation** COMSOL Multiphysics (AC/DC, Chemical Species Transport, Structural Mechanics, Heat

Transfer, Fluid Flow, Radio Frequency), KLM Simulation, Simulink, AutoCAD

**Programming** Python, MATLAB

#### RESEARCH EXPERIENCE

## **Graduate Visiting Student**

Aug 2025 - Present

Broad Institute of MIT and Harvard

Cambridge, MA

- Developing ultrasound-responsive bioinks for in-situ drug delivery.
- Understanding the neural response during haptics sensation using mechanical and electrical stimulation.

### **Graduate Research Assistant**

The Pennsylvania State University

Aug 2021 - Present *University Park, PA* 

- Synthesized phase-transition semiconducting hydrogel and characterized as organic electrochemical transistors for through-hair EEG electrodes to understand brain response for neuroprosthetics.
- Optimized transducer design, characterized and fabricated 120-element very large Stretchable Ultrasound Matrix Array for transcranial imaging during blast to understand cavitation during Traumatic Brain Injury.
- Optimized MRI-compatible neural probe design to reduce electromagnetic heating, eddy current and image artifacts using COMSOL (*Heat Transfer in Biological Tissue, Electromagnetic Waves- Frequency Domain*).
- Simulated ionotropic pressure sensor (*Electrostatics, Transport of Diluted Species, Solid Mechanics*), adhesion-aided stretching (*Contact: Traction-Displacement Law*), magnetic soft robot (*Laminar Flow, Solid Mechanics, Magnetic Field*), encapsulation using nanofillers (*Transport of Diluted Species, Solid Mechanics*)
- Fabricated and characterized ultrasound array for multimodal material detection (static mode) and gesture recognition sensor (dynamic mode) contactlessly using electrostatic induction.
- Simulated adsorption-limited mechanism using COMSOL, fabricated and applied MXene-based multifunctional sensor system for anxiety monitoring using EMG, glucose level in AR/VR systems.

## **Undergraduate Researcher**

Jadavpur University

Aug 2018 – July 2021 Kolkata, India

- Fabricated and modelled I-V characteristics of disorder governed Resistive Random Access Memory using Non-Equilibrium Green's Function and Many Body Localization (SERB Fellow)
- Developed statistical learning theory for Neural Networks using Riemannian Manifold
- · Developed fluid inspired path planning algorithm for Brain Computer Interface controlled wheel-chair

#### INDUSTRY EXPERIENCE

**NSF INTERN** 

Actuated Medical

Sept 2024 - Present Bellefonte, PA

- Fabricating Low-Intensity focused Ultrasound to reduce foreign body response after implant (SonoShield).
- Designing transducer for micron-scale ultrasonic vibration to improve insertion (NeuralGlider).

#### LEADERSHIP AND TEACHING EXPERIENCE

- Founded MEDhof and led a team of 35 doctors and 12 core members under MEDhof with a valuation of \$150k.
- Entrepreneurial Lead for NeuroXR (selected for NSF ICorps Nationals) focusing on wearable sensors for XR.
- Served as a Teaching Assistant for two semesters, teaching Statics and Dynamics, and Strength of Materials.

#### **PUBLICATIONS**

#### JOURNAL ARTICLES

- Yuan, Y., Chen, D., Li, J., Li, B., Abdullah, A.M., Zohra, F.T., Zhang, W., Zhang, X., Xin, X., Amidian, M.A., **Dutta, A.,** Shi, F., and Cheng, H., Three-dimensional shrinking electronics on freestanding and freeform curvilinear surfaces. *Sci. Adv.*11, eaea8051(2025).
- Abdullah, A.M. §, Biswas, M.A.S. §, **Dutta, A.** §, Li, J., Das, S., Zhang, X., Zhang, W., Zohra, F.T., Moreno Calva, A., Gray, J.L. and Jabelli, H., 2025. In Situ Functionalized MXene on Porous Laser-Induced Graphene for Adsorption-Dominated Miniaturized Multifunctional Sensors. *ACS nano*.
- Han, S., Shin, J.W., Lee, J.H., Li, B., Ko, G.J., Jang, T.M., **Dutta, A.**, Han, W.B., Yang, S.M., Kim, D.J. and Kang, H., 2025. Wireless, Multifunctional System-Integrated Programmable Soft Robot. *Nano-Micro Letters*, 17(1), p.152.

- Zhang, W., Zhang, X., **Dutta**, **A.**, Lorestani, F., Biswas, M.A.S., Li, B., Abdullah, A.M. and Cheng, H., 2025. Hydrogel-based sweat chloride sensor with high sensitivity and low hysteresis. *Biosensors and Bioelectronics*, p.117805.
- Zhang, H., Yang, H., Xin, M., Wang, Z., Zhang, H., **Dutta**, **A.**, Cheng, H. and Yang, L., 2025. Thermoelectric Composites Based on Porous Laser-Induced Graphene and Ion Hydrogel. *ACS Applied Materials & Interfaces*, 17(14), pp.21773-21784.
- Yang, L., Chen, X., **Dutta**, **A.**, Zhang, H., Wang, Z., Xin, M., Du, S., Xu, G. and Cheng, H., 2025. Thermoelectric porous laser-induced graphene-based strain-temperature decoupling and self-powered sensing. *Nature Communications*, 16(1), p.792.
- Lorestani, F., Zhang, X., Ataie, Z., Kedzierski, A., Liu, Y., López, A., **Dutta, A.**, Kacala, K., Niu, Z., Sheikhi, A. and Cheng, H., 2025. A Granular Hydrogel-Enabled Wearable Electrochemical Biosensing Platform for Continuous Non-Invasive Sweat Lactate Detection. *Small*, p.2502655.
- Jang, T.M. §, Han, W.B. §, Han, S., **Dutta, A.**, Lim, J.H., Kim, T., Lim, B.H., Ko, G.J., Shin, J.W., Kaveti, R. and Kang, H., 2024. Stretchable and biodegradable self-healing conductors for multifunctional electronics. *Science Advances*, 10(36), p.eadp9818.
- Hong, J.H.§, Lee, J.Y.§, **Dutta**, **A.**§, Yoon, S.L., Cho, Y.U., Kim, K., Kang, K., Kim, H.W., Kim, D.H., Park, J. and Cho, M., 2024. Monolayer, open-mesh, pristine PEDOT: PSS-based conformal brain implants for fully MRI-compatible neural interfaces. *Biosensors and Bioelectronics*, 260, p.116446.
- **Dutta**, **A.**, Niu, Z., Abdullah, A.M., Tiwari, N., Biswas, M.A.S., Li, B., Lorestani, F., Jing, Y. and Cheng, H., 2024. Closely packed stretchable ultrasound array fabricated with surface charge engineering for contactless gesture and materials detection. *Advanced Science*, 11(15), p.2303403.
- Ko, G.J., Naganaboina, V.R., Goda, E.S., **Dutta**, **A.**, Cheng, H. and Hwang, S.W., 2024. Towards Polymer Composite-Based Transient Electronic Systems. *Advanced NanoBiomed Research*, p.2400126.
- Ko, G.J. §, Kang, H. §, Han, W.B. §, **Dutta, A.** §, Shin, J.W., Jang, T.M., Han, S., Lim, J.H., Eom, C.H., Choi, S.J. and Ryu, Y., 2024. Materials and designs for extremely efficient encapsulation of soft, biodegradable electronics. *Advanced Functional Materials*, 34(39), p.2403427.
- Cho, Y.U. §, Kim, K. §, **Dutta**, **A.**, Park, S.H., Lee, J.Y., Kim, H.W., Park, J., Kim, J., Min, W.K., Won, C. and Park, J., 2024. MRI-Compatible, Transparent PEDOT: PSS Neural Implants for the Alleviation of Neuropathic Pain with Motor Cortex Stimulation. *Advanced Functional Materials*, 34(6), p.2310908.
- Lorestani, F., Zhang, X., Abdullah, A.M., Xin, X., Liu, Y., Rahman, M.M., Biswas, M.A.S., Li, B., **Dutta, A.**, Niu, Z. and Das, S., 2023. A highly sensitive and long-term stable wearable patch for continuous analysis of biomarkers in sweat. *Advanced Functional Materials*, 33(52), p.2306117.
- Lee, J.Y. §, Shin, J. §, Kim, K. §, Ju, J.E. §, **Dutta**, **A.**, Kim, T.S., Cho, Y.U., Kim, T., Hu, L., Min, W.K. and Jung, H.S., 2023. Ultrathin crystalline silicon nano and micro membranes with high areal density for low-cost flexible electronics. *Small*, 19(39), p.2302597.
- Yang, R., **Dutta**, **A.**, Li, B., Tiwari, N., Zhang, W., Niu, Z., Gao, Y., Erdely, D., Xin, X., Li, T. and Cheng, H., 2023. Iontronic pressure sensor with high sensitivity over ultra-broad linear range enabled by laser-induced gradient micro-pyramids. *Nature communications*, 14(1), p.2907.
- Xue, Y. §, Wang, Z. §, **Dutta**, **A.**, Chen, X., Gao, P., Li, R., Yan, J., Niu, G., Wang, Y., Du, S. and Cheng, H., 2023. Superhydrophobic, stretchable kirigami pencil-on-paper multifunctional device platform. *Chemical Engineering Journal*, 465, p.142774.
- Yang, L., Yan, J., Meng, C., **Dutta, A.**, Chen, X., Xue, Y., Niu, G., Wang, Y., Du, S., Zhou, P. and Zhang, C., 2023. Vanadium oxide-doped laser-induced graphene multi-parameter sensor to decouple soil nitrogen loss and temperature. *Advanced Materials*, 35(14), p.2210322.
- **Dutta**, **A.** and Cheng, H., 2023. Pathway of transient electronics towards connected biomedical applications. *Nanoscale*, *15*(9), pp.4236-4249.
- Niu, G., Wang, Z., Xue, Y., Yan, J., **Dutta**, **A.**, Chen, X., Wang, Y., Liu, C., Du, S., Guo, L. and Zhou, P., 2022. Pencil-on-paper humidity sensor treated with NaCl solution for health monitoring and skin characterization. *Nano letters*, 23(4), pp.1252-1260.
- Yang, L., Liu, C., Yuan, W., Meng, C., Dutta, A., Chen, X., Guo, L., Niu, G. and Cheng, H., 2022. Fully

- stretchable, porous MXene-graphene foam nanocomposites for energy harvesting and self-powered sensing. *Nano Energy*, 103, p.107807.
- Choudhury, S., **Dutta**, **A.** and Ray, D., 2021. Chaos and complexity from quantum neural network. A study with diffusion metric in machine learning. *Journal of High Energy Physics*, 2021(4), pp.1-33.

#### **BOOK CHAPTERS**

- **Dutta**, **A.** and Cheng, H., 2024. Mechanics of Transient Electronics. *Mechanics of Flexible and Stretchable Electronics*, pp.453-471.
- Zhou, H. §, **Dutta**, **A.** § and Cheng, H., 2024. Mechanics, structure, and materials science of transfer printing. In *Transfer Printing Technologies and Applications* (pp. 3-36). Elsevier.
- **Dutta**, **A.**, Abdullah, A.M., Biswas, M.A.S., Das, S., Zhu, J., Lin, Y. and Cheng, H., 2024. Micro-and nanostructured semiconductor materials for flexible and stretchable electronics. In *Comprehensive Semiconductor Science and Technology, Second Edition: Volumes 1-3* (pp. V3-493). Elsevier.

#### **PREPRINTS**

- **Dutta**, **A.**, Biswas, M.A.S., Meng, L., Gerhard, E., Calva, A.M., Zhang, W., Abdullah, A.M., Joharji, L., Che, Y., Yang, J. and Cheng, H. 2025. Synergy of a Complimentary Ionic Biogel Network for Through-Hair Neurohaptics. (Under Review *Nature Materials* https://doi.org/10.21203/rs.3.rs-5829714/v1)
- **Dutta**, **A.** and Rakshit, A., 2020. Geometry perspective of estimating learning capability of neural networks. *arXiv* preprint *arXiv*:2011.04588.
- Guha, R., Sengupta, A. and **Dutta**, **A.**, 2020. Sewage pooling test for SARS-CoV-2. arXiv preprint arXiv:2005.07269.

#### **UNDER REVIEW**

- Dutta, A., Biswas, M.A.S., Gerhard, E., Das, M., Meng, L., Zhang, W., Li, W., Calva, A.M., Pathak, S., Yang, J.Y., Yin, J., Meyet, J., Poudel, B., Abdullah, A.M., Che, Y., Chuang, C.H., Yang, J., Wang, S., Hu, X., Das, S., Cheng, H. Controlling thermoreversibility and conductivity in ionic biogels using phase thermodynamics. (*Nature Materials*, Under Review)
- Xiao, Y., Zhu, J., **Dutta**, **A.**, Song, C., Zhang, Y., Huang, C., Zhang, S., Qiu, D., Yang, H., Hu, T., Bi, P., Huang, Z., Gao, M., Pan, T., Yang, J., Lin, Y., Cheng, H. Liquid Metal-based Spatial-variant Stretchable Electronics via Single-step Programmable Transfer Printing. (Nature Electronics, Under Review)
- Biswas, M. A. S., **Dutta**, **A.**, Das, S., Abdullah, A. M., Zhang, W., Zohra, F. T., Cheng, H. Recent advances in laser-induced graphene-based gas sensors: from sensing mechanisms to biomedical applications. (Advanced Science, Submitted)

#### **PROJECTS**

# **Entrepreneurial Lead**

Oct 2023- Present *University Park*, *PA* 

NeuroXR: Bidirectional Neural Communication for Extended Reality Technologies

• The project aims to develop a wearable sensor for XR headsets that collects biomedical data of the trainee to significantly improve surgical training quality by introducing bidirectional communication, feedback mechanisms, and interaction dynamics.

**Founder** Nov 2016 – Jan 2019

medhof.com Kolkata, India

• A medical startup that provides a distributed patient-centered medical home facility. We worked on point-of-care medical technologies like ECG-based e-textiles and collected real-time medical data points.

#### AWARDS & ACHIEVEMENTS

- Awarded SERB Fellowship (DST, India) at the IACS (2021) and Jadavpur University, India (2020).
- Winner at Techstars Startup CoVID-19 Challenge, India Chapter for QUICKSOLUTIONS (2020).
- Awarded Engineering Scholarship (2021) from College of Engineering, Penn State.
- Awarded Leighton Riess Scholarship ('23, '24) from Center for Biodevices, Penn State.
- Awarded NIH T32 CDNE Fellowship supported by Center for Neural Engineering, Penn State (2023).
- Selected for NSF I-Corps National Program for NeuroXR- sensors for AR/VR for surgery training (2024).
- Selected for NSF INTERN program, collaboration with Actuated Medical (2024).
- Awarded Diefenderfer Graduate Fellowship in Entrepreneurship (2024).
- Awarded Fox Scholar (18 out of 600 graduate students) from Graduate School, Penn State (2025).
- Awarded Leighton Riess Fellowship from Center for Biodevices, Penn State (2025).
- Awarded NSF Student Travel Award for Future Faculty Symposium, Society for Engineering Science (2025).